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Abstract. The zero point energy associated with a Hermitian massless scalar field in the 
presence of perfectly reflecting plates in a 3D flat space-time is discussed. A new technique 
to unify two different methodsthe  zeta function and a variant of the cut-off methad-used 
to obtain the so-called Casimir energy is presented, and the proof of the analytic equivalence 
between bath methods is given. 

1. Introduction 

In a previous paper [ l ]  we introduced a new technique for comparing two usual 
methods of obtaining the Casimir energy, namely the cut-off method [Z] and the zeta 
function method [3-51. Using this approach we proved the analytic equivalence between 
these two methods in a ZD spacetime. The purpose of this work is to extend this 
previous result to a higher dimension. 

The problem of the renormalization of ill defined quantities leading to a physically 
significant result is a fundamental and ubiquitous question of quantum field theory. 
Although many regularization methods have been employed, a proof that all these 
different methods lead to the same result is still lacking [6,7]. 

The classical example of an ill defined quantity is that of the zero point energy of 
a quantum field in a flat spacetime. The Wick normal ordering procedure may elude 
this divergence. However, Casimir showed that this procedure is not adequate for the 
study of fields in the presence of surfaces where the fields satisfy boundary conditions. 
Using the idea that, although formally divergent, the zero point energy can suffer a 
finite change if the physical configuration is modified, he derived a finite result for the 
energy of the vacuum state of an electromagnetic field in the presence of conducting 
parallel plates. This method can be summarized in the following steps: a complete set 
of mode solutions and the respective eigenfrequencies of the classical wave equation 
satisfying appropriate boundary conditions is found; the divergent zero point energy 
of the quantized field is regularized by means of a cut-off function and is then 
renormalized using auxiliary configurations which are added and subtracted. 

Subsequently other methods, like the Green function method [X-lo], the 
dimensional regularization method [l l ,  121 and the zeta function method [3-51 were 
employed to obtain a finite result for the vacuum energy. Even in the well studied case 
of the Casimir energy, however, a proof of the equivalence between some of these 
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different techniques was not available. In this article an analytic proof of the equivalence 
between the zeta function and the cut-off method for obtaining the Casimir energy of 
a scalar field confined in rectangular cavities satisfying Dirichlet boundary conditions 
is presented for the case D = 3 (3D space-time). The generalization to D > 3 and fields 
of higher spin is straightforward. 

This paper is organized as follows: in section 2 the zeta function regularization 
method is briefly presented. In section 3 the exponential cut-off method is carefully 
studied. In section 4 the zeta function method is interpreted as an  'algebraic' cut-off 
method. In section 5 the unification between these two methods is achieved using the 
mixed cut-off procedure. The equivalence between these methods is obtained as a 
consequence of the analyticity of a certain complex function of two variables. Con- 
clusions are given in section 6. 

N F Svaifer and B F Svaiter 

In this paper we use h = c = 1. 

2. The Casimir energy obtained *sing the zeta function method 

For the massless scalar field confined in a 2~ rectangular box satisfying Dirichlet 
boundary conditions the eigenfrequencies are given by 

where L , ,  L, are the lengths of the sides of the box. 
The zero point energy is 

1 -  
E ( L , , L , ) = ;  1 wl, (2.2) 

E , ( L , , L , , s ) = 2  1 W",  

" , , = I  

where w., is given by equation (2.1). This expression is divergent and can be written 
as 

(2.3) 

The eqxessinx (2.3) is axa!y!ic Fo: !?e(:) z !. The ze:z F-xctiax -ethod coxsists 

1 -  -2s 

a.",=, 

for s = -112. 

in evaluating the analytic continuation of this function at the point s =  -112, thereby 
obtaining a finite result. Algebraic manipulations of equation (2.3), using equation 
(2.1), give 

(2.4) 

where L(2s) is the Riemann zeta function and A ( a ,  b; 2s) is the Epstein zeta function 
defined as [4,13] 

m 

A ( a , ,  a , , .  . . , a, ; 2s) = 1' (a ,n :+a ,n :+ .  . .+a,n:)-'. 
nl, nl.. . . , nk=-m 

The prime sign in the summation means that the term n, = n2 = . . . = n, = 0 is to be 

E I ( L , ,  L,;  -112) gives the Casimir energy U(L,, L,) ,  
exdiidzd. so &(L, ,L , ; s )  is ana!J:ic in 3Ec',{l/2,:) and the eva!ua:i=n of 
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To obtain the Casimir energy given by equation (2.5) through this method there is 
apparently no need for a renormalization scheme and a finite result comes out automati- 
cally. 

The basic idea employed by Casimir is that although the zero point energy is 
divergent, changes in the configuration lead to a finite shift in the total energy. In the 
exponential cut-off method, in order to evaluate this shift the total energy is regularized 
before the subtraction from the energy of a reference configuration. This total energy 
is obtained by adding the regularized zero point energy of the field inside and outside 
the cavity. This approach seems very natural if we are dealing with a system in which 
there is field inside and outside the cavity (let us call this system a 'box' (figure la)) .  
If we suppose that outside the cavity there is no field (as in the bag model or for the 
electromagnetic field in a bubble surrounded by a perfectly conducting material), there 
is only the contribution of the field inside the cavity (let us call this system a 'bubble' 
(figure l b ) ) .  As was briefly discussed in this section, the zeta function method apparently 
does not take into account the field outside the cavity. The two configurations, bubble 
and box, seem different and one question arises. Which one of these configurations 
did the zeta method discussed in this section treat? This point will be investigated later. 

Figure I. ( a )  The box configuration. ( b )  The bubble configuration. 

3. The exponential cut-off method 

The divergent expression given by equation (2,2! can be regu!arized using an expnen- 
tial cut-off function such as 

e-*%", (3.1) 

The regularized energy is then 

The function given by equation (3.2) is analytic for Re(A) > 0 but divergent at A = 0. 
A renormalization procedure is thus required to enable one to take the limit A+Oi 
without divergences. This method was employed by Casimir, Fierz [14], Boyer [15] 
and others using auxiliary configurations (taking into account the field outside the 
cavity) in order to obtain a finite result for the case of parallel plates. 

Let us define a function h(a, b, U )  which will be of use throughout this paper: 

[ [(y)' (Y)']'''] a ,b>O.  ( 3 . 3 )  h ( a , b , u ) =  1 exp -U - f - m 

n. m=, 
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Then the regularized energy given by equation (3.2) can be expressed as 

I d  
N L , ,  L2, A ) =  -- - h(Li, L2, A ) .  (3.4) 

Adding and subtracting terms in equation (3.3) in order to get a double summation 
in n, m E Z, performing this summation using the Poisson summation formula, integrat- 

which are introduced are geometric series, we get the following expression for the 
function h:  

2 ah 

ing this resu!t i n  pn!ar coordinat!es and using the fact thlt  the two simp!e S??"2!iC"S 

ab ab 
h(a, b, U)=---*+- U 1' (u2+4p2a2+4q2b2)-"* 

27r 27r p,q=--m 

(3.5) 

Defining r,=min(a, b) we see from equation (3.5) that h(a, b, U )  is analytic for 
O<(ul<2ro, the point U = O  is a second-order pole and the negative powers portion 
of the Laurent series expansions of h around U = 0 is given by 

ab a + b  
& . d a ,  b, u)=-uU2--u-' .  27r 271 

Substituting equation (3.5) in equation (3.4) the regularized energy becomes 

K ( L ,  L2, A )  

+& z' (A2+4p2a2+4q2b2)-3/2+A2gl(h) 
47r p.q=-m 

(3.6) 

where B. and B2 are Bernoulli numbers and & ( A )  is analytic in ! A ! < 2  min{L!, L2!. 
The two divergent terms in equation (3.6) are proportional to the 'volume' and to 

the 'perimeter' of the cavity; thus following the Casimir approach we need to add and 
subtract auxiliary configurations in order that: 

(i) The final result is a difference between 'isovolumetric' and 'isoperimetric' 
configuration sets. 

(ii) The auxiliary configurations should not give spurious contributions to the finite 
renormalized energy. 

(iii) The energy of the modes of the field inside and outside the cavity are present 
in the total energy. 

In order to satisfy prescription (iii) it is necessary to employ nested boxes and to 
make the lengths of the exterior box tend to infinity. This approach was employed by 
Boyer [15, 161 using nested spherical shells. In this paper prescription (iii) will not be 
used and only rectangular cavities will be employed. Therefore we will work with a 
variant of the exponential cut-off method, following only prescriptions (i) and (ii). 

Prescription (ii) is achieved ifthe distance between the opposite sides of the auxiliary 
cavities becomes infinite, so that the field inside these auxiliary boxes tends to the free, 
unconstrained field. 
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A nai’ve procedure to obtain the Casimir energy in the rectangular cavity case would 
be to define 

U ( & ,  L2) = !z Ee(Li, L2, A )  + EAR -Li, L2, A ) +  EJLi, R ‘ -  L1, A )  
R,R” 

+ E e ( R - L ~ , R ‘ - L * , A ) - 4 E , ( R / 2 , R ’ / 2 , A ) .  (3.7) 

This can he visualized by figures 2 ( a )  and (b). 
The problem of this renormalization is that we are adding ‘plates’ to the initial 

configuration. The field inside the cavities of sides ( R  - L,,  L2) and ( L l ,  R‘ -L , )  will 
never tend to the free unconstrained field as R, R ’ + m  as in the two-plate Casimir 
approach, and prescription (ii) is thus not satisfied. This (equation 3.7) renormalized 
energy must he corrected by removing this ‘plate’ effect. This can be done by means 
of the following renormalization; 

Y ( L , ,  L2, R, R’, A) 

=.&(LI, J-2, A ) +  Ee(R - L I ,  L2, A )  + E.(Li, R’- L2, A )  

+ E , ( R -  L , ,  R’ -  L1, A ) - 4 E e ( R / 2 ,  R’/2,  A )  

-[E.(L,, R’-  L , ,  A)+E, (R  - L l ,  R ’ -  L,, A ) - 2 E e ( R / 2 ,  R’ -L , ,  A ) ]  

- [E . (R  - Ll , L2, A ) +  E,(R - L, , R ’ -  L1, A )  

- 2 E , ( R - L , ,  R’j2,  A ) ] .  (3.8) 

Then 

U ( L , , L 2 ) =  lim Y ( L l , L 2 , R , R ’ , A ) .  
*-0 

R.R’-m 

(3.9) 

The evaluation of U ( & ,  L2)  by equation (3.9) gives the same result as that obtained 
using equation (2 .5) .  It is easy to see that if we use the following auxiliary configurations 
(illustrated in figures 3a and b), which are ‘isovolumetric’ and ‘isoperimetric’, the finite 

RI/* 

RI2 

Figure 2. Set of configurations employed 10 obtain U(L , ,  L,) of equation (3.7). 
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R t  Li & - 
2 2 

I 

R'l  I p 2 

R 

contribution of the auxiliary cavities to the Casimir energy vanish as R, R '+m.  This 
strange configuration gives the same result as that obtained from equation (3.9), as 
expected. 

4. The zeta function method as an 'algebraic' cut-otT method 

A regularized energy can be obtained from equation (2.2) using an 'algebraic' cut-off: 

(4.i) -T 
0 ,,"I 

and the regularized energy becomes 

m 

E,(L,,L,,u)=f z W " d J , ,  Re(u)>3 (4.2) 

which is convergent and analytic for Re(o)>3.  Of course E.(L, ,  L2, U)= 

E , ( L , ,  L, ,  s = ( u - l ) / 2 ) ,  and using this relation and equation (2.4) we get 

" , " , = I  

E , ( L , ,  L,, U) =k4((;)z, 8 (;),; d) -i( ( ~ ) " - ' + ( ~ " ' - ' ) ~ ( ~ - , ) ,  (4.3) 

If ~r > 3, this cu!-of! works we!! and we set a finite energy. As in any cut-off method, 
we wish to take the limit u+O starting from U> 3. Equation (4.3) defines an analytic 
function in U E C\{2,3} (see figure 4). 

It is interesting to note that equation (4.3). when evaluated at U = 0, gives the 
Casimir energy derived in section 2. This later result (of section 2) is based on the use 
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In o 

Figure 4. The summation of equation (4.2) is convergent in the shadowed region, while 
the analytic continuation of this function is a meromorphic function with its poles indicated. 

of the anaiytic continuation oi a compiex iunction. Aithough it seems to be quite 
obvious, we wish to point out that analytic continuations: 

(i) Are to be performed in open connected domains. 
(ii) Make use of paths (entirely contained in the domain) in order to extend the 

function which is initially defined only in a subset of the domain. 
Since we are dealing with the zeta method as a cut-off method, we will move U 

(our regularization parameter) only along the real axis, and certain procedures related 
to the physics of the problem will be employed, namely, sum and subtraction of 
auxiliary cavities aimed at eliminating divergences and satisfying prescriptions (i) and 
(ii) of section 3. 

A careful study of equation (4.3) leads us to the expression 

where G , ( L , ,  L2 ,  U )  is analytic in the whole u-complex plane. As we move along the 
real axis from u > 3  towards u = O ,  we find, first, a divergence proportional to the 
‘volume’ of the cavity and, after that, a divergence proportional to the ‘perimeter’ of 
the cavity. Again, it is clear that it is necessary to use auxiliary configurations with 
‘isovolumetric’ and ‘iosperimetric’ subtractions in order to eliminate the divergences 
along the path. If we take the auxiliary configurations as in equation (3.8) or as  in 
figures 3 ( a )  and ( b )  (therefore satisfying prescriptions (i) and (ii) of section 3) the 
result will be the same as that of section 2, since the auxiliary configurations will not 
disturb the value of the analytic continuation of equation (4.3) at the point U = O  in 
the limit R, R’+m. Therefore the zeta function method employed in section 3 (for 
rectangular cavities) is analytically equivalent to the ‘algebraic’ cut-off method presen- 

Since the exponential cut-off is a strong factor of convergence, the regularized 
energy E.( L, , L2,  A )  becomes singular only when A + O+. Being a weaker factor of 
convergence, the algebraic cut-off scatters the singularities of the regularized energy 
EJL, ,  L,, U )  along the path towards the origin, leaving the origin itself free from 
singularities when we take the analytic continuation. 

t-rl :- +I.:. ,.,” 111 L . l , l  .,*.,.L.YLL. 

5. The mixed cut-off as a tool for unification 

The procedure of sections 3 and 4 can be unified by  the use of a ‘mixed’ cut-off function 

e-*%, (5.1) 
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In this case the regularized energy is 
m 

E,(L,,  L2 ,A ,u)=d  U ~ , , , O J ; ~ ~ - ~ ~ - -  

Re(A) > 0 U € C  or Re(A) = 0 Re(u)> 3 
“ . m = l  (5.2) 

The regularized energy given by equation (5.2) as a function of A and U is analytic 
in Re( A )  > 0, U E C and is continuous in Re( A )  P 0, Re(u) > 3. In A = 0, as a function 
of U, it is possible to continue it analytically in U E C\{2,3}. 

Of course in view of equations (3.2), (4.2) and (5.2) 

EALi, Lz, A )  = Em(L,, Lz, A, u=o) 

3 Lz. U )  = E m ( b  9 Lz, A = O ,  U )  

and lim,A,o E,(L,,  L,, A, U )  is not defined. 
 ne reguiarized energy thus obtained in equation (5 .2)  can be renormaiized using 

the same procedures as in sections 3 and 4: addition and subtraction of auxiliary 
configurations. This procedure can be formalized as follows. Define 

- 

N ZN 

Y ( L I , L Z . R , R ’ , A , U ) =  C &n(Lit ,Lza,A,u)-  1 E m ( L , , L 2 , , L u )  (5.3) ,=, t=N+,  

where the original cavity with lengths ( L I ,  L2)  appears as ( L , , ,  L2J .  The other L,,, 
k = 1,2, i = 2.3 . . . 2 N  are monotonous functions of R, R’ in such a way that 

lim Lk, = 00 4 1  i Z 1 .  (5.4) 

Since we want ‘isovolumetric’ and ‘isoperimetric’ subtraction, it must be imposed 

R, R’+m 

that 
N i N 

i = 1  i=N+I 
L, ,+L , ,=  L , ,+L,!  

and 

Figure 5. The summation of equation (5.2) converges to an analytic function (in A, U )  in 
the shadowed region. It also converges in &(A) =0, Re(u)>3. The points 0=2 ,  3 are 
poles of the analytic continuation of E,(L, , L,,  A = 0, U ) .  
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In section 4 it was proved that the zeta function method is equivalent to the algebraic 
cut-off method, which is a particular case of the use of the mixed cut-off method. This 
happens when we evaluate 

U,,,(L,, L2) = lim Y ( L , ,  L2. R, R', A = 0, U )  (5.7) 
0 - O +  

R. R'-m 

and the Casimir energy derived by the exponential cut-off method is given by 

Uexp(L,, L,)= lim Y ( L , ,  L2,  R, R ' , A ,  u=O). 
*-+O 

R. R'-m 

We claim that the 'isovolumetric' and 'isoperimetric' subtraction performed in 
equation (5.3) renders the function Y ( L , ,  L2,  R, R', A, u) analytic in IAl< po, U E  C for 
some po>O. Consequently, equations (5.7) and ( 5 . 8 )  give the same result and the two 
methods-cut-off and zeta function-are analytically equivalent. Now we conclude 
the proof demonstrating the analyticity of Y(L,, L2. R, R', A, U )  in a domain [ A ( < p o ,  
U E 5 for some po > 0. 

Let us call 

n(~o)={A E C ;  IAI  < P O } ~  { U € @ )  for po> 0. (5.9) 

Using an integrai representation oi the T iunction, the reguiarized energy given by 
.. 

equation (5.2) can be expressed for Re(A) > 0 or Re(A) = 0 and Re(u) > 3 as 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Since G2(L1, L,, R, R', A, U )  is a sum of analytic functions in (A ,  U )  cR(po), this 
function is analytic in the same domain. 
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H ( L , ,  L,, R, R‘, U )  is a sum of 2 N  functions, each one analytic in O<(ul< 

p0= MinlL,, L2} (5.15) 

thus from equation (5.4) it follows that H ( L , ,  L,, R, R’, U )  is analytic at O<lu lc2po  
and has, at worst, a second-order pole at U = 0. Using equation (5.12). the polar portion 
of each h(L,# ,  L,j ,  U )  derived in section 3 and the restrictions imposed upon Lki by 
equations ( 5 . 5 )  and (5.6),  we find that the coefficients of the negative portion of the 
Laurent series of H ( L , ,  L,, R, R‘, U )  (around U =O) vanish. Then H ( L , ,  L 2 ,  R, R’, U )  
is analytic at 1u1<2po. Thus using equation (5.9) and the properties of the r function 
we see that Y ( L , ,  L, ,  R, R’, A, m )  has an analytic continuation in (A, m )  E fl(p,,), as we 
claimed. 

2 Min{L,{, L2#), with a second-order pole at U = 0. Then if we take 

6. Conclusions 

In this paper we developed a consistent method to unify two hitherto unrelated 
regularization methods employed to obtain the Casimir energy, the zeta function 
method and the exponential cut-off method. 

Rectangular cavities with Dirichlet boundary conditions in a 3~ space-time ( D  = 3) 
were studied. We proved the analytic equivalence between the zeta function method 
and a variant of the exponential cut-off method for these configurations. The generaliz- 
ation for higher dimensional space-times is straightforward. 

It is important to note that it was showed that the zeta function method is analytically 
equivalent to the ‘algebraic’ cut-off method of section 4. This second method performs 
configurations subtraction satisfying prescriptions (i) and (ii) (section 3). Therefore 
we can say that the zeta function method performs ‘virtual’ configurations subtraction 
(satisfying prescriptions (i) and (ii)). This equivalence, together with the analytic 
equivalence between the algebraic and the exponential cut-off method (proved in 
section 4), gives a proof of the analytic equivalence between the zeta function method 
and the variant of the cut-off method of section 3. Once again we speak of a variant 
of the exponential cut-off method because prescription (iii) was not followed and none 
of the auxiliary configurations employed reproduced in any sense the geometry of the 
space outside the original cavity. In Casimir’s [2] original work and in Fierz [14] and 
Boyer’s [15] papers, once the region outside the plates is the union of two simple 
connected domains (in fact, two semi-spaces) this kind of problem does not exist and 
therefore the contribution of the exterior modes are cancelled out in the renormalization 
procedure. In the case of spherical shells [ 15-17] the cut-off method has been employed 
with the use of concentricauxiliarycavities; then one ofthe auxiliarycavities reproduces 
the geometry of the space outside the original shell. For 0 - 2  dimensional parallel 
plates in a D-dimensional space-time such problems do not appear and SO it is 
straightforward to prove the analytic equivalence between the zeta and the exponential 
cut-off method for these configurations by means of the mixed cut-off method. 
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